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In Part I of this paper, Popov's Theorem PI is first introduced and then
a new Theorem I is formulated. The proof is given in Appendix I. An illustrative
example shows that the result obtained from Theorem I agrees with that obtained
from Lur'e's Theorem. In Part II the linear part transfer function may have
poles along the imaginary axis with real positive residues. The nonlinear func-
tion f(e) is bounded as well as continuous. Popov's Theorem PII is extended to
form a new Theorem II, which gives the condition for quasi-asymptotic stability.
Two corollaries are also given. Corollary IIa gives the condition for asymptotic
stability. The proof of Theorem II and its corollaries is given in Appendix II.
Three examples check with the results of analog computer studies. /
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FOREWORD

On April 19, 1966, at the Space Science Seminar at NASA's George C.
Marshall Space Flight Center, Dr. Y. H. Ku of the University of Pennsylvania
presented a lecture entitled Nonlinear Oscillations in High-Order Systems. This
presentation was based largely on a paper published in the Journal of The
Franklin Institute, June, 1965.

This Technical Memorandum is a reprint of the original Franklin Institute
paper, Extensions of Popov's Theorems for Stability of Nonlinear Control Sys-
tems. The seminar report also included 30 or 40 additional figures of cyclic
stable and unstable functions.
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following year Dr. Ku was President of National Central University. He was
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TECHNICAL MEMORANDUM X- 53477

EXTENSION OF POPOV'S THEOREMS FOR STABILITY
OF NONLINEAR CONTROL SYSTEMS

INTRODUCTION

Popov has recently given two theorems by which we can determine the
stability of nonlinear control systems. Theorem PI gives the asymptotic
stability of the system involving a nonlinear function f(e) by the condition
Re [(1 + jwq)G(jw)] > 0, where G(jw) denotes the linear part transfer func-
tion, and ¢ is a non-negative constant. The new Theorem I is an extension of
Theorem PI such that the restriction ¥ > 0 is now changed to v > 0. Similar
to Theorem PII, the new Theorem II is applicable to control systems with its
linear part transfer function having pairs of imaginary poles. While Theorem
PII gives the condition for hyperstability, Theorem II gives the condition for
quasi-asymptotic stability. Corollary IIa then gives the condition for asymp-
totic stability whenever ¢ can be set to zero.

EXTENSION OF POPOV'S FIRST THEOREM

Popov’s Theorem PI (1) is first introduced in this sectidn. Extension of this
Theorem will be given as new Theorem 1. (The proof of Theorem I is given in
Appendix 1.) An exampie shows that the result obtained from Theorem 1
agrees with that obtained from Lur'e’s Theorem.

Popov’s Theorem PI: If a non-negative quantity ¢ exists such that for
all real w, the inequality

Re [(1 +jug)G(ju)] >0 (1)

takes place, then the trivial solution of the system is asymptotically stable
provided a given set of assumptions are valid.
Kalman (2) restated Popov’s Theorem PI as follows:
“Assume that A is stable and that v+ > 0. Then the system is g.a.s. if
the condition

Re {(2ay + jo)[C'(joI — A)~'b + v/jw]} 2> 0 @

for all real w holds for 2ay = 1 and some ¢ > 0.”
In the above quotation, we have replaced the original symbol F by A for a
real n X n matrix, h by C for a real n-vector, g by b for another real n-vector,
and the constants p and 8 by v and ¢, respectively. The prime denotes the
transpose. Comparison of the two expressions gives the transfer function of the
system linear part as




G(jw) = C'(jol — A)™'b + v/jo (v > 0). 3)

Note that on the righthand side of Eq. 3, the first term contains the poles with
negative real parts while the second term denotes a pole at the origin.

The new Theorem I tries to remove the restriction that ¥ > 0 so as to
include the case v = 0 in its application to feedback control systems shown in
Fig. 1 and introduces a new constant & which is non-negative. The system can
be defined by the following differential equations:

% = Ax + bf(e), )
e = — C'x — hf(e), (5)

where x denotes a real n-vector, x = dx/dt, A is a real n X n matrix whose
eigenvalues may include zero, b and C arc real n-vectors, and h is a non-
negative constant. The nonlinear function f(e) is a continuous function of e,
with the conditions:

0 <ef(e) <kete #0); f(0) =0. (6)

) e t(e)

Teo e fle) | X,
e

Dis)r s+ 10524 315430
Nis)sg +1

Fic. 1. Block diagram of a nonlinear F1g. 2. Block diagfam of example 1.
control system.

It is further assumed that f'(e¢) = df(e)/de is continuouns, and 1 4 hf’{e) #= 0.
Referring to Fig. 1, the linear part transfer function is defined by

Gi(s) = C'(sI — A)~'b + h. )

For s = jw, Eq. 7 gives Gl(j&), where v is absorbed in the first term on the
righthand side. The new Theorem I can be stated as follows:

Theorem I: If a non-negative quantity ¢ exists such that for all real w
the inequality!

1/k + Re [(1 + jwg)G1(jw)] = 0 (8)

takes place, then the trivial solution of the system Eqs. 4-5 is asymptotically

stable provided the assumptions made are valid.
Substituting G1(jw) into Eq. 8 gives

1/k + Re [(1 + juwg)C'(juI — A)~'b] + h 2 0. (9)

! Note the factor (1/k) appeared in Popov and Halanay (6) and in Aizerman and Gant-
macher (7), p. 52). However the expression Eq. 8 in the present paper refers to G1(jw) which
is more general than G(jw) in (6), or W (jw) in (7). Popov (4) did introduce the factor k (but
not 1/k). Maigarin (8) gave in (2.14) an additional term N which corresponds to h in Eq. 7,
but the (1/k) factor was[not included.




When h = 0, the condition that f'(¢) is continuous can be removed and that
the condition 1 4 Af’ » 0 is automatically satisfied. The proof is given in
Appendix 1.

Example 1: Given a control system as shown in Fig. 1 with the linear part
transfer function:
Gis) = s+ 1

C+AG+IE+95)
The left hand side of inequality Eq. 8 gives
1/k + Re [(1 + jwg)Gi(jw)] = (Aw® + Asx* + Ase® + 40)/B(w), (11)

where A;=1/k, Ay=9¢—1+438/k, A1=q+21+361/k, A¢=30(1430/k), and
B(w) = 100(w* — 3)* + w?(w® — 31)%. Expression Eq. 11 is greater than zero
when ¢ > 1/9 for any positive k and any w. Hence the system is asymplotically
stadble, according to Theorem 1.

This result checks with the result by Lur’e’s Theorem as shown in (3).

h=0; vy =0. (10)

For this example, a set of state variables x can be chosen as z), i, and z,
where z, is shown in Fig. 2. Referring to Eqs. 4 and 5, we get

0 1 0 0 1
0 0 1 b= 1|0 C= . (12)
-30 -31 -10 1 0

For h = 0, substituting Eqs. 12 into Eq. 7 gives G,(s) ‘specified by Eq. 10.
Note that from Fig. 2, we get the output ¢, which is the negative of ¢ in an
autonomous system (with input r = 0), as

A=

C=‘$1+i1=21+13. (13)
From Fig. 2, we also get the differential equation
f(c) = I3 + 10z; 4+ 31x: + 302, (14)

where £, = z; and #; = z; are defined in matrix A. The variables z,, ., and z,
are known as phase-space variables.

EXTENSION OF POPOV'S SECOND THEOREM

Popov’s Theorem PII (4) is first introduced in this section. Extension of
this Theorem will be given as new Theorem II. (The proof of Theorem II is
given in Appendix II.) Three examples are given to illustrate the application
of Theorem II. Analog computer results are presented to check the stability
of the three control systems studied.



Popov’s Theorem PII:

In order for the solution x = 0 of the non-degenerate system Eqs. 15-16
to be hyperstable it is necessary and sufficient that the transfer function G, (s),
defined in Eq. 18, be a real positive function.

The system considered in Theorem PII can be defined by the equations

X = Ax + bo(t) (15)
B(t) = C'x + he(t) (16)
which satisfy the following inequality for any T > 0:

f T SBMA < 5 sup |x(®)], (17)
0 0<I<T

where § i8 a non-negative constant. The transfer function G4(s) is defined by

m i
GO =3 i 3 T Gol®), (18)
where (1(s) is defined in Eq. 7, p; > 0 and w; are constants. The solution of

the system Eqs. 15-16 is hyperstable if there exists a constant K such that any
solution of the system satisfies the inequality

[x(t) < K(|x(0)] + 8) (19)

for all ¢ () that satisfies inequality 17.

For the sake of developing new Thecorem II, let ¢(t) = f[e(t)] and B8(t)
= — ¢(t) with the conditions given in Ilqs. 6. Substituting these into Eq. 17
gives

- /ch(e)dt <& sup |x(®)]. (20)
0 0<¢<T

This is satisfied for any non-negative § (including § = 0). The system Egs.
15-16 now take the form of Eqs. 4-5, where the A matrix has eigenvalues on
the imaginary axis as well as on the left half of the s-plane.

The new Theorem II c¢an be stated as follows:

Theorem II: If f(e) is bounded and a non-negative quantity q exists such
that for all real w the inequality

1/k + Re [(1 + jug)Go(jw)] 2 0 (21)

takes place, then the trivial solution of the extended system Eqs. 4-5, with
its transfer function Gi(s) defined by Eq. 18, is quasi-asymptotically stable
provided the above assumptions are valid.

Note that the definition of quasi-asymplotic stability follows that given in
(5). The proof is given in Appendix II.

Corollary Ila: If q can be set to zero, then the trivial solution of the
extended system Eqs. 4-5 is asymptotically stable provided the assumptions
are valid.




Corollary IIb: If q can be set to zero, f(¢) is continuous, but the restric-
tions on f’(e) are disregarded, then the trivial solution of the extended system
Eqgs. 4-5 is stable.

These corollaries are discussed in Appendix 11,

Example 2: Given a control system shown in Fig. 1 with the linear part
transfer function:
35+ 482 + 5s* + 5+ 1
8(3s+ 1)(s+ 1)

and f(e¢) = tanh e, which is bounded and continuous. The derivative f’(e)
= sech? e is continuous. Note that f(0) = O0and ! + Af'(e) = I 4 sech?e > 1
which is not equal to gero. Dividing the numerator of Eq. 22 by its denominator
gives h = 1 and

Gi(s) = (22)

382+ 25 4 1
sz 4+ 1(s2 4 1)

Expansion into partial fractions gives

Gi(s) = + 1. (23)

s + L. (24)

fle)

F1a. 3. Block diagram of example 2.

Comparison with Eq. 18 shows that p; = 1 and w; = 1. Equation 24 also
shows that the coefficient of 1/s is ¥ = 1, and this term denotes a pole at the
origin. Note that for this example, Go(s) in Eq. 18 is given by

3 _3+s+1 @5)

Go(®) = 5 tl="G¥D"

8 3+1
Referring to inequality 6, we get

0 < etanhe < ke*(e = 0;; tanh0 =0 (26)
and k can be chosen as 1. Then applying inequality 21 of Theorem II gives
1+Re[(1+jwq)(.—7.1;—5—3;37*_—1+1)] =-(9—‘T1£‘,,—-1—&‘~"_>_0
for g=>1. (@27




According to Theorem II, the system is quasi-asymptotically stable. The
system can be represented by the block diagram shown in Fig. 3. The variables
chosen for analog computer study are: zo, ), 2;, and z,. The system
equations are:

iy = f(e)
fi=—dn 41 (28)
21 = 23
i: = — m;’z.-_ + !(‘3)
and
— e = ¢ = hf(e) + vz0o — T1 + P12y, (29)

whereh = 1,9 = 1, p1 = 1, w; = 1, and the coefficient of z; is —1. The result
is checked by the analog computer study shown in Fig. 4.

Example 3: Given a control system shown in Fig. 1 with the linear part
transfer function

P+a+2 s 1
GO =G DE+D ~FF1 aFi T (30)
X0
4-
~
W = 03 2 4N

F1a. 4. Analog computer results—example 2.

and f(e) = e + ¢* which is continuous but not bounded. Note that A = 1 and
the system has one pole at —1 and one pair of imaginary poles. The derivative
isf'(e) =1+3e and 1 + kf'(e) = 2 + 3¢t > 2, and f(0) = 0. From condi-
tion Eq. 6, k has to be greater than 1 + 2, For ¢ arbitrarily large, k has to be
chosen as infinity. Then setting ¢ to zero in inequality 21 gives, for 1/k = 0,

Re Go(ju) = Re [1— 1 ] ©

Jo F1 >0 (31)

=l+w"‘

This system is asymptotically stable according to Corollary IIa. Referring to
Fig. 3, y=0,h =1, p1 = 1, and v, = 1, but the (s + 1/3) part is replaced
by (s + 1), with coefficient —1 for z,. The system equations are:




.1':; = -2 +f(8)
i1 =2 } (32)
é’ = -2 +f(e)

—G=c=f(¢)—'11+22. (33)

This result is checked by the analog computer study shown in Fig. 5.
Example 4: Given a control system shown in Fig. 1 with the linear part
transefer function:
] 1
GE=Fri "2t ®9)

and f(e) = e + €. This differs from Example 3 in having a pole at ~2 instead
of at —1. Setting ¢ = 0 and 1/k = 0 in inequality 21 gives

. 1 ] 24
ReG.(Jw)=Ra[l—j“+2]-4+w,>0. 35)
% %
= =) ) ragt Ty e [5) 2z ragt]

F1a. 5. Analog computer results—example 3.

This system is asymptotically stable according to Corollary IIa. This result
is checked by the analog computer study shown in Fig. 6.

CONCLUSION

This paper has given two new theorems for the stability of control systems
with one nonlinearity f(¢). These theorems are extensions of Popov’s Theorems
PI and PII. Theorem I removes the restriction that ¥ > 0 so that vy > 0
and a pole at the origin may not be necessary. It also introduces a non-negative
constant h in the expression of the linear part transfer function G,(s), defined
in Eq. 7. The inequality 8 in Theorem I includes a non-negative constant
(1/k). Example 1 demonstrates its application to an asymptotically stable
control system. Theorem 11 is applicable to control systems with its linear part



transfer function G (s) having pairs of imaginary poles. If the nonlinear func-
tion f(e) is bounded, it is shown that a similar test of inequality can be made
for predicting the quasi-asymptotical stability of the system. Corollary Ila
disregards the boundedness of f(e) and predicts asymptotic stability whenever
a non-negative quantity ¢ (used in Theorems I and II) can be set to zero.

% %

F1a. 6. Analog computer results—example 4.

Theorem II is applied to Example 2 and Corollary IIa is applied to Examples 3
and 4. The results check with those obtained from analog computer studies.

APPENDIX I

Lemmas

(1) If G(s) is a real positive funetion of the form N(s)/D(s) where N(s)
= dpy18" 4 ¢+ 4+ das + dy and D(s) = s + - -+ - a5 + ay, then there exists
a function e(t) with the following properties:

/” S0t 2 ol y(T)|* = 6]y (0)] |3(T)|

Fle)] = H(ju)®(jo) and  |H(jw)|? = Re[G(ju)],

where § is the Fourier transform, ay and 8, are positive constants. (See (4),
Lemma 1 and p. 15.)

(2) If p(t) satisfies the conditions Supo<i<r|p(t)] < &, / [o@®]dt < n

°

and / |do(t)/dt|dt < u then < ris Supeci<r|y(t)| where u

/ OO

and r, are positive constants. (See (4), Lemma 3.)

(@) If r*(t) < aSupocecr|r(®)] + B8, then |r()| <a+ 48 0<t<T
where a and B are positive constants. (See (4), Lemma 2.)




T
(4) If both / ef (e)dt and de/dt are bounded, then lim;., e(f) = 0. (See

(1), Appendix 5.)
(5) If limus e(t) = O then lime., y(¢) = 0. (See (1), Appendix 6.)

Proof of Theorem I

Let G:1(s) be expanded into the form
Gi8) =h+v/s+ (c1+cs8+ -+ + c.5%1)/D(s) (I-1)

where D(s) = 8* + a.s" ! + --- 4+ @28 + a1, & Hurwitz polynomial. This
expansion is shown in Fig. 7. The system equations corresponding to Fig. 7

£{e) —d

fe)——» Gy (s) ~—C

) ®)
F1a. 7. Expanded block diagram of the linear part transfer function G,(s).

are given by Egs. 4 and 5 where

. o0 - - -0 1 %
iy 001 - -0 0 ¢
x=|" A={0001 -0 b= |0 C=|c
Tn 0—a — Qg4 l. (;,.

For the convenience of proving the new Theorem I, let the matrix A be simpli-
fied to B by removing the first row and the first column. Similarly x, b, and C
are simplified to get y, by, and g. Thus, Eqgs. 4 and 5 can be rewritten as

¥ = By + bif(e) (I-2)

Zo = f(e) (I-3)

e= —yno — g'y — hf(e) (I-4)

where

. 010 0 0 .
z‘ 0 010 0 0 c‘
y=|" B=|0001 . 0 by = | g=|"
i I TR B : :

and g’ is the transpose of g. Let




10

or(t) = o(t) = fle(®)] when 0<t<T
=0 when t>T

then the solution of Eq. (I-2) can be found in integral form as
[
YO = WOy O + [ W — wbsbr(u)du, 1-5)

where W(t) = £'[(sI — B)~'], the inverse Laplace transform is taken on
every element of the square matrix.
A new function jr(t) is defined as

jr(®) = — v(t) — qdv/dt — (h + 1/k + qv)ér(t) (I-6)-
where

]
o0 = [ gW = wbibr @©7)
The Fourier transform of Eq. (I-6) exists and is found to be
§Ljr(0] = Jr(jow)

= = [(1 + jog)g' (joI — B)7'by + h + gv + 1/k]8(jw)
= [ + jwg)G1(jw) = v/jw + 1/k]®(jw) -8y

where ®(jw) is the Fourier transform of ¢r(t).
Let

RO = [irteroa+ [ ea 1-9)
then it follows from Parseval’s theorem that
RO = - [ RelIr(ia)o (o) Yo
+ 5 [ THGIRGIH oo )T
- [ Relu/k + (1 + joa)Gation 1o (i o

= f " Re[1/k + (1 + jog)61(je) 1| #(ju) "da = 0. (I-10)

This follows from the facts that 1/k + (1 + sq)G1(s) is a real positive func-
tion, by using Lemma (1) and Eq. (I-8). Substituting Eq. (I-5) into Eq. (I-4)
gives :

e=—g'WOy©0) — v(t) — hér(t) — v (I-11)
Differentiating both sides of Eq. (I-11) with respect to ¢ gives

* Asterisk denotes the complex conjugate.




é=—gWOy0) — o() — hér() — vio (1-12)

subtracting both sides of Eq. (I-11) by ¢r(t)/k, multiplying both sides of
Eq. (I-12) by ¢ and then adding them together yields

— o) — gi(®) — (h+ vg + 1/K)ér(®) = [e — #r(t)/k]
+ (g¢) + gTW () + qW(®) Iy (0) + vz, + ghér(t). (I-13)

It follows from Eqgs. (I-6), (I-9), and (I-13) that
R(T) = Ri«(T) + R«(T) + R:i(T) + Ru(T) + Rs(T) + R(T) (I-14)

where
r
BT = 1k [ Dhe = 60360 > 0
since the integrand is always positive according to the assumption.

T «T)
B = o [ a0 = q [ 100

e(T) o(o
| =0 [T 0@ - [ 1082 - k@

whefe
F(0) = [ " fe)de > 0.
r ]
B(n) = [ €TW O + WO 0600t > = nly®] Sup, [y(0]
by Lemma (2) since B has eigenvalues with only negative real parts.
T T
R(T) = / yeb(O)dt = v / zatedt = 7/2[z3(T) — 22(0)]
T
RT) = | ahs(040it = h/2AS(T) = #O)] = = ghs'(0)/2
Ry(T) = f‘ EWdt > | (D) = 6]y |y(T)|, by Lemma (1).

Substituting all the R’s into Eq. (I-10) gives the following inequality :
ay(N|* + y2X(T)/2 < |y O |[8:]y(T)| + 1 Sup [y(®)|]

+ v22(0)/2 + qF (0) + qhe?(0)/2. (I-15)

Now let
ry = min. [, v/2] when v>0
= when vy=0
rs = (81 + v)/rs
réd = 1/2r,

11
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then from the fact that |y(T) < Supo<i<r|y(t) < Supe<:<r|x(f)| and
Lemma (3), the inequality (I-15) becomes

Ix(t)] < r3]x(0)] + ravyz(0) + 29F (0) + qhe?(0). (I-16)

This proves the stability of the system.
Now from Eq. 5, we have

e + hf(e) = — C'x. (I-17)

Since x is bounded and f(e) has the same sign as e, both f(e) and e have to be
bounded. Differentiating both sides of Eq. (I-17) with respect to ¢ gives

é = — C'%/[1 + hf'(e)]. (1-18)

Ilence ¢ is also bounded because C'x is bounded and 1 4 hf'(e) # O.
From the assumption of inequality 6, there exists a positive quantity
N < k such that

Ry(t) = 1/k /T {ke — 2)J@)dt > [(k — N)/k] /Tw(t)dt > 0. (I-19)

T

Since Ri(¢) is bounded from Eq. (I-10), / cp(t)dt is bounded and this

bounded value is independent of T. It follows from J.emmas (4) and (5) that
lim e ¢(f) = 0 and limie ¥ = 0. Again from [2q. (I-14) we have lim,, 2, = 0.
This proves the theorem.




APPENDIX I

Proof of Theorem II

The transfer function G1(s) is expanded as shown in Fig. 8. The system
equations corresponding to Fig. 8 are given by

x = Ax + bf(e), (II-1)
z‘z.'..l = 2% (t = l, 2, ey, m), (11-2)
2y = — wizei + f(e), (II-3)
e= —C'x — p'z — hf(e), (11-4)
where
z 0
1 pl
2y .
z=|. and p=|:
z' 0
2m pm

and matrices A and b are the same as in Appendix I.
Following the same procedure as in proving Theorem I, we have in this case

R'(T) = R(T) + R«(T) + Ra(T), (I1-5)

f(e)

fle}—t

fle}——a G, (s) l—a¢

()
F1a. 8. Expanded block diagram of the linear part transfer function G(s)
with poles along imaginary axis.
where R(T) is the same as given in Appendix I and R;(T) and Rs(T) are

Ry(T) = [ " O, : (I1-6)

Ro(T) = g [ " s (. (IL-7)
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Using Eqs. (1I-2) and (II-3), we can find R:(7T) as

R(T) = é

T ™ [T
pizad(t)dt = El[ P22t + 02912904 ]dt
= 1/2:21 p:‘[Zziz(T) + w.-’zg.-_l’(T) -_ 22,'2 (0) - w;’zz.-_lz(O)]
> a2|z(T)|? — B2[2(0)|?, (II-8)

where a; = min. [p:/2, pie?/2] and B; = max. [2:/2, piw?/2] for all i. Ob-

viously, a; and B, are positive constants.
Assuming Supe<i<r|¢(t)] = M, then Rs(T) can be found as

R(T) = ¢ [ wis0d = g [ s
> — gM[pI[[2(D)] + |2(0)|]
2 = 2gM|p| Sup |z(®). (II-9)
Substituting R7(T) and R¢(T) into Eq. (II-5) gives
@l (D)[* + 1(T)/2 + asl2(DI* < 7O 5D + i Sup 501

+ 2¢M | PIKS‘ILI; lz(®) | + v2:2(0)/2 + ¢F (0)

+ h¢*(0)/2 + B:|z(0)[%. (LI-10)
Now let

= (3]
z b
ry = min. [a;, v/2, a3] when ¥y>0
= min. [a'l, az ] when y=20
re = max. [281/rs, 2r1/7s, 2|p| /7]
ri = 1/2rg and ryg = 20,
Then by the same reason as in obtaining inequality (I-16) we have

|n(T)|* <rel|y(0)] + qM](,g}g)Tln(t)l

+ r2yze* (0) + 2¢F (0) + ghe?(0) + rs|2(0)|2]. (IL-11)
It follows from Lemma (3) that
ln®] <rly©O] + ]
+ rivyxe?(0) + 29F (0) + qh¢*(0) + r[z(0)[2. (II-12)

Inequality (II-12) shows that 5 is bounded. Ienee hoth x and z are bounded.
In view of Eq. (II-4), e has to be bounded. Since 1 + hf’(e) = 0, € is also

T
bounded. For the same reason as in Appendix I, / e¢(t)dt is bounded. It

o




follows from Lemmas (4) and (5) that lim;., ¢ = 0 and lim,., §y = 0.
Now rewriting I5q. (1I-4) as

YT, + P’z = —e — hf(e) — g'y = e (0). (11-13)
Differentiations of Eq. (1I-13) with respect to { can be written as

(vZo) + (p122) + - -+ + (Pn22m) = ()
0+ w(Pr21) + -+ + 0 (Pm2em) = a(l)

......................................

0+ w™(Piz2) + -+ + 0 {Pmiom) = €all) ]

(I1-14)

The determinant of the simultaneous linear Eq. (II-14) is not equal to zero
since w; # w; # 0 for © # j by assumption. The quantities at the right side
of Eq. (II-14) approach zero as { approaches infinity. This shows that Eq. 14
has a trivial solution as { approaches infinity. Thus,

YTo = D122 = P22 = -+ = DmZam =0, OF Xy=272 =24= +-+ = 29w =0

as { approaches infinity. By Eqs. (1I-2) and (1I-3),2; = 23 = «++ = 23m1 = 0
as ¢ approaches infinity.

This completes the proof of Theorem II. Corollaries IIa and ITb follow
quite obviously after the substitution of ¢ = 0 into inequality (I1I-12).
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